Math, asked by xdaiv, 1 month ago

rationalize the denominator​

Attachments:

Answers

Answered by anindyaadhikari13
4

\texttt{\textsf{\large{\underline{Solution}:}}}

Given fraction,

 \tt =  \dfrac{ \sqrt{3} + 2 }{ \sqrt{3} - 2 }

Multiplying both numerator and denominator by (√3 + 2), we get,

 \tt =  \dfrac{( \sqrt{3} + 2 )^{2} }{( \sqrt{3} - 2 )( \sqrt{3}  + 2)}

Using identity (a + b)(a - b) = a² - b², we get,

 \tt =  \dfrac{( \sqrt{3} + 2 )^{2} }{( \sqrt{3})^{2} - (2)^{2} }

 \tt =  \dfrac{( \sqrt{3} + 2 )^{2} }{3 - 4}

 \tt =  \dfrac{( \sqrt{3} + 2 )^{2} }{ - 1}

 \tt = - ( \sqrt{3} + 2 )^{2}

 \tt = - \{ ( \sqrt{3})^{2}  +( 2 )^{2}  + 2 \times 2 \times  \sqrt{3}  \}

 \tt = - \{3 +4 + 4 \sqrt{3}\}

 \tt = -(7 + 4 \sqrt{3})

 \tt = -7  -  4 \sqrt{3}

which is our required answer.

\texttt{\textsf{\large{\underline{Answer}:}}}

  • -7 - 4√3.

•••♪

Answered by adityak4m6le007
8

Step-by-step explanation:

 \frac{ \sqrt{3}  + 2}{ \sqrt{3}  - 2}  \\  =  \frac{ \sqrt{3} + 2 }{ \sqrt{3}  - 2}  \times  \frac{ \sqrt{3}   +  2}{ \sqrt{3}  +  2 }  \\  =  \frac{ {( \sqrt{3}  + 2)}^{2} }{3 - 4}  \\  =  \frac{3 + 4 \sqrt{3} + 4 }{ - 1}  \\  =   - (7 + 4 \sqrt{3} ) \\  =  - 7  - 4 \sqrt{3}

Similar questions