Math, asked by Esehba, 1 year ago

Rationalize the Denominator
4/√5+√3​

Answers

Answered by manasa1010
19

Answer:

hello friend here is your answer

Attachments:
Answered by eswarvts
20

Answer:-

Rationalizing the denominator

 =  \geqslant   \frac{4}{ \sqrt{5}  +  \sqrt{3} }  \\ take \: the \: denominator \: opposite \: to \: the \: rhs \: side \\  =  \geqslant \frac{4}{ \sqrt{5}  +  \sqrt{3} } \times  \frac{ \sqrt{5} -  \sqrt{3}  }{\sqrt{5} -  \sqrt{3}}  \\  =  \geqslant  \frac{4( \sqrt{5}  -  \sqrt{3}) }{ {( \sqrt{5} -  \sqrt{3}  )}^{2} }  \\  =  \geqslant  \frac{4( \sqrt{5}  -  \sqrt{3})}{5 - 3}  \\  =  \geqslant  \frac{4( \sqrt{5}  -  \sqrt{3})}{2}  \\  =  > 2( \sqrt{5}  -  \sqrt{3} )

So, The Answer is 2(√5-√3)

Please mark me as Brainliest

❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️

Similar questions