Math, asked by Tomboyish44, 1 year ago

Rationalize the Denominator 4 + √5 divided
by 4 - √5

Answers

Answered by abhi569
9

 \frac{4 +   \sqrt{5}  }{4  -  \sqrt{5}  }  \\  \\  \\   \mathbb{By  \:  \:  \: Rationalization} \\  \\  \\  =  >  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  \times  \frac{4 +  \sqrt{5} }{4 +  \sqrt{5} }  \\  \\  \\  =  >   \frac{ {(4 +  \sqrt{5} )}^{2} }{ {4}^{2}  -  {( \sqrt{5}) }^{2} }  \\  \\  \\  =>  \frac{16 + 5 + 8 \sqrt{5} }{16  - 5}  \\  \\  \\  =>  \frac{21 + 8 \sqrt{5} }{11}



,
Answered by sijasubbiah
7

Hey

Here is your answer,

= 4 + √5 / 4-√5
= 4+√5 / 4-√5 x 4+√5 / 4+√5
= (4+√5)^2 / (4)^2 - (√5)^2

Since (4+√5)^2 is in the form of (a+b)^2 , we apply the identity
(a+b)^2 = a^2 + b^2 + 2ab and ,
(4)^2 - (√5)^2 is in the form of a^2 - b^2 , we apply the identity
a^2 - b^2 = (a+b)(a-b)

= 16+5+8√5 / 16-5
= 21+8√5/11

Hope it helps you!


Tomboyish44: Welcome
Similar questions