Math, asked by SADIP10, 1 year ago

rationalize the denominator


√5-√3/√5+√3

Answers

Answered by tejasri2
144
√5-√3/√5+√3
= (√5-√3)(√5-√3)/(√5-√3)√5+√3)
= √5²+√3²-2(√5)(√3) / √5²-√3²
= 5+3-2√15/5-3
= 8 - 2√15 / 2
= 2(4-√15)/2
= 4-√15


here is ur answer

♡♥ hope it helps u ♥♡
Answered by pulakmath007
9

\displaystyle \sf{  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  } = 4 -  \sqrt{15}

Given :

\displaystyle \sf{  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  }

To find :

To rationalize the denominator

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  }

Step 2 of 2 :

Rationalize the denominator

\displaystyle \sf{  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  }

Multiplying both of the numerator and denominator by √5 - √3 we get

\displaystyle \sf{  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  }

\displaystyle \sf{ =   \frac{( \sqrt{5}  -  \sqrt{3})( \sqrt{5}  -  \sqrt{3} )}{ (\sqrt{5}  +  \sqrt{3})(\sqrt{5}  -  \sqrt{3} ) }  }

\displaystyle \sf{ =   \frac{{( \sqrt{5}  -  \sqrt{3}) }^{2} }{ {(\sqrt{5} )}^{2}   - {(  \sqrt{3} )}^{2} }  }

\displaystyle \sf{ =  \frac{ {(\sqrt{5} )}^{2}  - 2 \times  \sqrt{5}  \times  \sqrt{3}  + {(  \sqrt{3} )}^{2} }{ 5 - 3}  }

\displaystyle \sf{ =  \frac{ 5 - 2 \sqrt{15}  + 3 }{ 2}  }

\displaystyle \sf{ =  \frac{ 8- 2 \sqrt{15} }{ 2}  }

\displaystyle \sf{ =  \frac{ 2(4 -  \sqrt{15} ) }{ 2}  }

\displaystyle \sf{ = 4 -  \sqrt{15}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (√5+√2)²

https://brainly.in/question/3299659

2. Simplify ( 8+√5)(8-√5).

https://brainly.in/question/17061574

#SPJ3

Similar questions