Math, asked by siddharthnigamfan, 1 year ago

rationalize the denominator 5-4√2÷2√5-3

Answers

Answered by Anonymous
3
!! Hey Mate !!

your answer is --

We have ,

[tex] \frac{5 - 4 \sqrt{2} }{2 \sqrt{5} - 3} \\ \\ = \frac{(5 - 4 \sqrt{2})(2 \sqrt{5} + 3)}{(2 \sqrt{5} - 3)(2 \sqrt{5} + 3) } \\ \\ = \frac{10 \sqrt{5} + 15 - 8 \sqrt{10} - 12 \sqrt{2} }{ {(2 \sqrt{5)} }^{2} - {3}^{2} } \\ \\

【 Hope it helps you 】

siddharthnigamfan: thank you very much
Anonymous: last ka do line galat hai
Anonymous: shi kar lena
siddharthnigamfan: ok
siddharthnigamfan: dekhti ho
abhi569: I think, zitar forget to write -12√2
Anonymous: yes
abhi569: Edit option??
abhi569: Wait
abhi569: Correct it!!! (-:
Answered by Cutiepie93
2
Hello friends!!

Here is your answer :

 \frac{5 - 4 \sqrt{2} }{2 \sqrt{5}  - 3}


 =  >  \frac{5 - 4 \sqrt{2} }{2 \sqrt{5}  - 3}  \times  \frac{2 \sqrt{5}  + 3 }{2 \sqrt{5}  +  3 }


 =  >  \frac{(5 - 4 \sqrt{2} )(2 \sqrt{5} + 3) }{(2 \sqrt{5}   - 3)(2 \sqrt{5}  + 3)}


Using identity :

( a + b)( a - b) = a² – b²

 =  >  \frac{5(2 \sqrt{5}  + 3) - 4 \sqrt{2}(2 \sqrt{5} + 3)  }{ {(2 \sqrt{5} )}^{2}  -  {(3)}^{2} }


 =  >  \frac{10 \sqrt{5} + 15 - 8 \sqrt{10}  - 12 \sqrt{2}  }{20 - 9}


 =  >  \frac{10 \sqrt{5} + 15 - 8 \sqrt{10}  - 12 \sqrt{2}  }{11}


Hope it helps you... ^_^

#Be Brainly

abhi569: Bdia jaan
Cutiepie93: Thanks jaan
abhi569: No thanks
Similar questions