Math, asked by shoaib45, 1 year ago

rationalize the denominator √5/√5+2-√3/√5-2

Answers

Answered by Aurora34
0
given: √5/√5+2-√3/√5-2

we have to rationalize the denominator

ans: √5(√5-2)-√15(1-2)


see the attachment for further process

___________________________________
Attachments:
Answered by trishala4
3
hi friend
here's your answer looking for

 \frac{ \sqrt{5} }{ \sqrt{5}  - 2}  -  \frac{ \sqrt{3} }{ \sqrt{5}  - 2}  \\
let's solve it separately

 \frac{ \sqrt{5} }{ \sqrt{5}  - 2}  = \\  \\  \frac{ \sqrt{5} }{ \sqrt{5}  - 2}  \times  \frac{ \sqrt{5}  + 2}{ \sqrt{5}  + 2}  =  \\  \\   \frac{5 + 2 \sqrt{5} }{5 - 4}  =  \\  \\ 5 + 2 \sqrt{5}
now solving second one

 \frac{ \sqrt{3} }{ \sqrt{5} - 2 }  \\  \\  =  \frac{ \sqrt{3} }{ \sqrt{5}  - 2}  \times  \frac{ \sqrt{5} + 2 }{ \sqrt{5}  + 2}  =  \\  \\  \frac{ \sqrt{15}  + 2 \sqrt{3} }{5 - 4}  =  \\  \\  \sqrt{15}  + 2 \sqrt{3}
now, putting both values

5 + 2 \sqrt{5}  - ( \sqrt{15  }  + 2 \sqrt{3} )
5 + 2 \sqrt{5}  -  \sqrt{15}  - 2 \sqrt{3}
hope u r satisfied with my answer

Similar questions