Math, asked by avnitak757, 4 months ago

rationalize the denominator √5/5+√5​

Answers

Answered by pranavillendula
1

Answer:

5 root 5 - 25 / 20

Step-by-step explanation:

root 5 / 5+ root 5 * 5-root 5/5-root5

root 5 * 5-root 5/5+root 5*5-root 5

5 root 5 -25 / 20

Answered by KnowtoGrow
0

Answer = \frac{\sqrt{5} - 1 }{4}

Explanation:

To rationalize:    \frac{ \sqrt{5} }{5 +\sqrt{5} }

Proof:

=\frac{ \sqrt{5} }{5 +\sqrt{5} }

Multiplying both numerator and denominator by ( 5 - √5 )

=\frac{ \sqrt{5} }{5 +\sqrt{5} }  X  \frac{5 -\sqrt{5}}{5 -\sqrt{5}}

=\frac{ \sqrt{5}  (5 - \sqrt{5})}{(5 +\sqrt{5}) ( 5 - \sqrt{5})}

= \frac{5\sqrt{5} - 5 }{5^2 - (\sqrt{5})^2 }                                                [ (a - b )² = a² - b² ]

= \frac{5(\sqrt{5} - 1) }{25 - 5 }

= \frac{5(\sqrt{5} - 1) }{20}

= \frac{\sqrt{5} - 1 }{4}

Hence, proved.

Hope you got that.

Thank You.

Similar questions