Math, asked by ashwinkumarsethi, 6 hours ago

rationalize the denominator. 8/√2 + √5​

Answers

Answered by Anonymous
9

Answer:

Given :

 \:  \:  \:  \:  \:  \:  \:  \:  \: { \pmb{ \frac{8}{ \sqrt{2}   +  \sqrt{5} } }} \\

Rationalizing :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  : { \implies{ \frac{8}{ \sqrt{2} +  \sqrt{5}  } }} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  : { \implies{ \frac{8}{ \sqrt{2}  +  \sqrt{5} } \times  \frac{ \sqrt{2} -  \sqrt{5}  }{ \sqrt{2}  -  \sqrt{5} }   }} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  : { \implies{ \frac{8( \sqrt{2} -  \sqrt{5})  }{ {( \sqrt{2} )}^{2}  -  { (\sqrt{5}) }^{2} } }} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  : { \implies{ \frac{8 \sqrt{2}  - 8 \sqrt{5} }{2 - 5} }} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  : { \implies{ \frac{8 \sqrt{2}  - 8 \sqrt{5} }{ - 3} }} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  : { \implies{ \frac{8}{ - 3}( \sqrt{2}  -  \sqrt{5} ) }} \\

{  \therefore{ \underline{ \pmb {\mathfrak{ \frac{8}{ - 3}( \sqrt{2}  -  \sqrt{5} ) \:  \: is \: the \: answer}}}}} \\

Answered by Mysteryboy01
1

  =  \: \frac{8}{ \sqrt{2 +  \sqrt{5} } }

 =  \frac{8}{ \sqrt{2 +  \sqrt{5} } }  \times   \frac{ \sqrt{2  -   \sqrt{5} } }{ \sqrt{2 -  \sqrt{5} } }

 =      \frac{8( \sqrt{2 -  \sqrt{5)} } }{( \sqrt{2 ^{2} - ( \sqrt{5 ^{2}) }  } }

 =  \frac{8 \sqrt{2 - 8 \sqrt{5} } }{2 - 5}

  = \frac{8 \sqrt{2 - 8 \sqrt{5} } }{ - 3}

 \frac{8}{ - 3} ( \sqrt{2}  -  \sqrt{5} )

Similar questions