Math, asked by hskavitha11, 1 year ago

rationalize the denominator a^2÷square root of a^2+b^2 +b

Answers

Answered by pulakmath007
17

SOLUTION

TO DETERMINE

Rationalize the denominator

 \displaystyle \sf{ \frac{ {a}^{2} }{ \sqrt{ {a}^{2} +  {b}^{2}  }  + b} }

EVALUATION

 \displaystyle \sf{ \frac{ {a}^{2} }{ \sqrt{ {a}^{2} +  {b}^{2}  }  + b} }

 =  \displaystyle \sf{ \frac{ {a}^{2} {  \sqrt{ ({a}^{2} +  {b}^{2}  }  -  b)}}{  (\sqrt{ {a}^{2} +  {b}^{2}  }  + b){ ( \sqrt{ {a}^{2} +  {b}^{2}  }  -  b)}} }

 =  \displaystyle \sf{  \frac{{a}^{2} ({  \sqrt{ {a}^{2} +  {b}^{2}  }  -  b)}}{ {( \sqrt{ {a}^{2}  +  {b}^{2} } )}^{2} -  {b}^{2}  }  }

 =  \displaystyle \sf{  \frac{{a}^{2} ({  \sqrt{ {a}^{2} +  {b}^{2}  }  -  b)}}{  {a}^{2}  +  {b}^{2} -  {b}^{2}  }  }

 =  \displaystyle \sf{  \frac{{a}^{2} ({  \sqrt{ {a}^{2} +  {b}^{2}  }  -  b)}}{  {a}^{2}    }  }

 =  \displaystyle \sf{  \sqrt{ {a}^{2} +  {b}^{2}  }  -  b }

FINAL ANSWER

 \displaystyle \sf{ \frac{ {a}^{2} }{ \sqrt{ {a}^{2} +  {b}^{2}  }  + b} =  \sqrt{ {a}^{2} +  {b}^{2}  } -  b}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. if the real positive fourth root of(28+16√3) is divided by (2+√3) and the result is expressed as (a+b√3) with a&b both

https://brainly.in/question/26773744

Answered by D2468
3

Answer:

mark me as brainliest hope it helps you in your studies

Attachments:
Similar questions