Math, asked by indianmithyar14, 1 month ago

. Rationalize the denominator and find the value of a and b



give correct answer and I will mark brainliest​

Attachments:

Answers

Answered by GPGAMER9128
1

answer in the attachment

Attachments:
Answered by TYKE
1

 \sf \frac{3 \sqrt{2} }{3 \sqrt{2}  - 2 \sqrt{6} }  = a  + b \sqrt{12}

 \sf{ \frac{3 \sqrt{2} (3 \sqrt{2}  +2 \sqrt{6} )}{(3 \sqrt{2}  - 2 \sqrt{6} )(3 \sqrt{2} + 2 \sqrt{6}  )} } = a + b \sqrt{12}

 \sf{ \frac{36 + 6 \sqrt{12} }{ {(3 \sqrt{2} )}^{2} -  {(2 \sqrt{6}) }^{2}  } } = a  +  b \sqrt{12}

 \sf \frac{36 + 6 \sqrt{12} }{36 - 24}  = a + b \sqrt{12}

 \sf \frac{6(6+  \sqrt{12}) }{12}  = a + b \sqrt{12}

  \sf\frac{6 +  \sqrt{12} }{2}  = a + b \sqrt{12}

Comparison of both we get,

 \sf \: a \rightarrow 6 \: and \: b   \rightarrow \frac{1}{2}

Similar questions