Math, asked by kcparunnavalar, 2 months ago


Rationalize the
denominator and find the value of a and b
5+√7/5-√7=a+b√7

Answers

Answered by sandy1816
0

 \frac{5 +  \sqrt{7} }{ 5 -  \sqrt{7} }  = a + b \sqrt{7}  \\   \frac{5 +  \sqrt{7} }{5 -  \sqrt{7} }  \times  \frac{5 +  \sqrt{7} }{5 +  \sqrt{7} }  = a + b \sqrt{7}  \\  \frac{( {5 +  \sqrt{7} })^{2} }{25 - 7}  = a + b \sqrt{7}  \\  \frac{25 + 7 + 10 \sqrt{7} }{18}  = a + b \sqrt{7}  \\  \frac{32 + 10 \sqrt{7} }{18}  = a + b \sqrt{7}  \\    \frac{16 + 5 \sqrt{7} }{9}  = a + b \sqrt{7}  \\  \frac{16}{9}  +  \frac{5}{9}  \sqrt{7}  = a + b \sqrt{7}  \\ comparing \: both \: sides \\ a =  \frac{16}{9}  \:  \:  \:  \:  \: b =  \frac{5}{9}

Similar questions