Math, asked by arpitsahoo, 1 year ago

rationalize the denominator and find X amd Y. 2+5√7÷2-5√7=x+√7y​

Answers

Answered by aggarwalnandini73
1

Answer:

Step-by-step explanation:

=\frac{2+5\sqrt{7} }{2-5\sqrt{7}} = x + \sqrt{7} y

By rationalising,

=\frac{2+5\sqrt{7} }{2-5\sqrt{7} }×\frac{2+5\sqrt{7} }{2+5\sqrt{7} } = x + \sqrt{7} y

=\frac{(2 + 5\sqrt{7}) ^{2} }{2^{2} - (5\sqrt{7} ^{2})  } = x + \sqrt{7} y[/tex]

=\frac{4 + 175 + 20\sqrt{7} }{-171} = x + \sqrt{7} y

=\frac{179 + 20 \sqrt{7} }{-171}[/tex]= x + \sqrt{7} y[/tex]

= 179 + 20√7 = -171 ( x + √7y)

= 179 + 20√7 = -171x -171√7y

=179 + 171x = -191√7y

Similar questions