Math, asked by swarnar12345, 10 months ago

rationalize the denominator and simplify to find the value of
4/√5+√3​

Answers

Answered by Devkanya09
8

Step-by-step explanation:

By rationalizing the denominator:

4/√5+√3 *√5-√3/√5-√3

⇒4(√5-√3) / (√5)²-(√3)²

⇒4√5-4√3 / 5-3

⇒4√5 -4√3 / 2

⇒4(√5-√3) / 2

since 4 is divisible by 2.

so,

⇒2(√5-√3)

So......

............

....

...

..

.

HOPE YOU LIKE AND MARK ME AS BRAINILIST...

Answered by harendrachoubay
10

The value \dfrac{4 }{\sqrt{5}+\sqrt{3}} is equal to 2(\sqrt{5}-\sqrt{3}).

Step-by-step explanation:

We have,

\dfrac{4 }{\sqrt{5}+\sqrt{3}}

To find, the value \dfrac{4 }{\sqrt{5}+\sqrt{3}} = ?

\dfrac{4 }{\sqrt{5}+\sqrt{3}}

The rationalize the denominator, we get

=\dfrac{4 }{\sqrt{5}+\sqrt{3}}\times \dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}

Using the algebraic identity,

a^{2} -b^{2} =(a+b)(a-b)

=\dfrac{4(\sqrt{5}-\sqrt{3}) }{\sqrt{5}^2-\sqrt{3}^2}

=\dfrac{4(\sqrt{5}-\sqrt{3}) }{5-3}

=\dfrac{4(\sqrt{5}-\sqrt{3}) }{2}

=2(\sqrt{5}-\sqrt{3})

Thus, the value \dfrac{4 }{\sqrt{5}+\sqrt{3}} is equal to 2(\sqrt{5}-\sqrt{3}).

Similar questions