Math, asked by bisheshsingh852, 10 months ago

Rationalize the denominator....
both.. ​

Attachments:

Answers

Answered by Anonymous
1

<body bgcolor=pink><font color=purple>

 \huge \tt {ANSWER:}

 \huge \tt { \frac{1}{ \sqrt{5} +  \sqrt{2} } }

 \huge \tt { =  \frac{1}{ \sqrt{5} +  \sqrt{2}  }  \times  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5}  -  \sqrt{2}} }

 \huge \tt { =   \frac{ \sqrt{5}  -  \sqrt{2} }{5 - 2}}

 \huge \tt {  =  \frac{ \sqrt{5}  -  \sqrt{2} }{3}}

 \huge \tt { \frac{1}{ \sqrt{7} -  \sqrt{2}  } }

 \huge \mathfrak { =  \frac{1}{ \sqrt{7} -  \sqrt{2}  }  \times  \frac{ \sqrt{7} +  \sqrt{2}  }{ \sqrt{7} +  \sqrt{2}  } }

 \huge \tt { =  \frac{ \sqrt{7} +  \sqrt{2}  }{7 - 2}}

 \huge \tt {  =  \frac{ \sqrt{7}  +  \sqrt{2}  }{5} }

HOPE IT HELPS YOU ARMY

Answered by Sudhir1188
9

ANSWER:

(1) (√5-√2)/3

(1) (√7+2)/3

GIVEN:

(1)

 \dfrac{1}{ \sqrt{5}  +  \sqrt{2} }

(2)

 \dfrac{1}{ \sqrt{7} - 2 }

TO FIND:

  • The value of the above expressions.

SOLUTION:

(1)

 =  \dfrac{1}{ \sqrt{5} +  \sqrt{2}  }  \\  \\  =  \frac{1( \sqrt{5}  -  \sqrt{2}) }{( \sqrt{5} +  \sqrt{2}  )( \sqrt{5}  -  \sqrt{2} )}  \\  \\  =  \frac{( \sqrt{5}  -  \sqrt{2} )}{5 - 2}  \\  \\  =  \frac{ \sqrt{5} -  \sqrt{2}  }{3}

(2)

 =  \dfrac{1}{ \sqrt{7} - 2 }  \\  \\  =  \frac{1( \sqrt{7}  + 2)}{( \sqrt{7}  - 2)( \sqrt{7} + 2) }  \\  \\  =  \frac{( \sqrt{7} + 2) }{7 - 4}  \\  \\  =  \frac{ \sqrt{7} + 2 }{3}

NOTE

some important formulas:

  • (a+b)(a-b) = -b²
  • (a+b)² = ++2ab
  • (a-b)² = a²+b²-2ab
Similar questions