Math, asked by manuverma44455, 8 months ago

rationalize the denominator by comparing a& b- (i)3+√2/3-√2=a+b√2


please help​

Answers

Answered by ksonakshi70
1

Answer:

 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  = a + b \sqrt{2}  \\  \frac{3 +  \sqrt{2} }{2 -  \sqrt{2} }  \times  \frac{3  +  \sqrt{2} }{3  +   \sqrt{2} }  = a + b \sqrt{2}  \\  \frac{(3 +  \sqrt{2})  {}^{2} }{3 {}^{2}  - ( \sqrt{2} ) {}^{2} }  = a + b \sqrt{2}  \\  \frac{3 {}^{2} + ( \sqrt{2}  ) {}^{2} + 2 \times 3 \times  \sqrt{2}  }{9 - 2}  = a + b \sqrt{2}  \\  \frac{9 + 2 + 6 \sqrt{2} }{7}  = a + b \sqrt{2}  \\  \frac{11 + 6 \sqrt{2} }{7}  = a + b \sqrt{2}  \\  \frac{11}{7}  +  \frac{6 \sqrt{2} }{7}  = a + b \sqrt{2}  \\ a \:  \:  =  \frac{11}{7}  \\ b \:  \:  =  \frac{6}{7}

Answered by bhaskarkumar3008
2

Step-by-step explanation:

it is your answer.if it helps you than mark me as brainliest or say thanks plzz

Attachments:
Similar questions