Math, asked by darshnabhavsar2, 10 months ago

rationalize the denominator in the following
 \frac{1}{ \sqrt{5 } +  \sqrt{2}  }

Answers

Answered by Anonymous
62

\mathtt{\huge{\underline{\red{Answer\: :}}}}

☞ 1 / √5 + √2

=> 1 / ( 25 + 4 )

=> 1 / 29

= > 0.03

Answered by nilesh102
22

Solution:-

{ \tt{\dashrightarrow{\huge{  \frac{1}{ \sqrt{5} +  \sqrt{2}  } }}}}

For rationalization we need to take conjugate pair of denominator

√5 + √2 is √5 - √2

{ \tt{\dashrightarrow{\huge{  \frac{1}{ \sqrt{5}  +  \sqrt{2} }  \times  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} -  \sqrt{2}  } }}}}

{ \tt{\dashrightarrow{\huge{  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} +  \sqrt{2}   \times  (\sqrt{5} -  \sqrt{2} ) } }}}}

{ \tt{\dashrightarrow{\huge{  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5 \times 5 }  -  \sqrt{2 \times 2} } }}}}

{ \tt{\dashrightarrow{\huge{   \frac{ \sqrt{5}  -  \sqrt{2} }{ \sqrt{25} -  \sqrt{4}  }  }}}}

{ \tt{\dashrightarrow{\huge{    \frac{ \sqrt{5} -  \sqrt{2}  }{5 - 2}  }}}}

{ \tt{\dashrightarrow{\huge{  \frac{ \sqrt{5} -  \sqrt{2}  }{3} }}}}

i hope it helps you.

Similar questions