Math, asked by dhruvinsenghani6, 9 months ago

• Rationalize the denominator in the
following.
 \frac{1}{ \sqrt{7 -  \sqrt{6} } }
 \frac{1}{ \sqrt{5 +  \sqrt{2} } }

Answers

Answered by Blossomfairy
7

\star\:\sf \frac{1}{ \sqrt{7 - \sqrt{6} } }

 \sf{  \frac{1}{ \sqrt{7} -  \sqrt{6}   }\times  \frac{ \sqrt{7}  +  \sqrt{6} }{ \sqrt{7} +\sqrt{6}  }   }

\implies\sf{ \frac{ \sqrt{7} +  \sqrt{6}  }{7  - 6} }

\implies \boxed{\sf{ \sqrt{7} +\sqrt{6} }}\orange \bigstar

_________....

 \star\:\sf\frac{1}{ \sqrt{5 + \sqrt{2} } }

\sf{ \frac{1}{5   + \sqrt{2} } }

  \implies\sf{ \frac{1}{\sqrt {5} +  \sqrt{2}  } \times  \frac{\sqrt {5} - \sqrt{2}  }{\sqrt {5} -  \sqrt{2} }  }

\implies\sf{ \frac{\sqrt {5 }-  \sqrt{2} }{5 - 2} }

\implies  \boxed{\sf{ \frac{\sqrt {5 }-  \sqrt{2} }{3} }}  \orange\bigstar

Answered by Anonymous
7

\bigstar Correct Question:

Rationalize the denominator in the following:

  •  \frac{1}{ \sqrt{7}  -  \sqrt{6} }
  •  \frac{1}{ \sqrt{5} +  \sqrt{2}  }

\bigstar Given:

  •  \frac{1}{ \sqrt{7}  -  \sqrt{6} } \:\:and\:\:</li><li>\frac{1}{ \sqrt{5} +  \sqrt{2} }

\bigstarTo find:

  • To Rationalise the denominators.

\bigstar Solution:

1.  \:  \:  \:  \: \frac{1}{ \sqrt{7}  -  \sqrt{6} }

 =  \frac{ \sqrt{7}  +  \sqrt{6} }{( \sqrt{7}  -  \sqrt{6})( \sqrt{7}   +  \sqrt{6}) }

(By using - = (a + b)(a - b))

 = \frac{ \sqrt{7} +  \sqrt{6}  }{ ( { \sqrt{7}) }^{2}   -  { (\sqrt{6} )}^{2} }

 = \frac{ \sqrt{7} +  \sqrt{6}  }{7 - 6}

 =  \sqrt{7}  +  \sqrt{6}

(\because √a × √a = a)

2. \:  \:  \: \frac{1}{ \sqrt{5} +  \sqrt{2}  }

 = \frac{ \sqrt{5}  -  \sqrt{2} }{ (\sqrt{5} +  \sqrt{2} )( \sqrt{5}  -  \sqrt{2} ) }

(By using a² - b² = (a + b)(a - b))

   =  \frac{ \sqrt{5} -  \sqrt{2}  }{ {( \sqrt{5} )}^{2}  -  { (\sqrt{2} )}^{2} }

 =  \frac{ \sqrt{5}  -  \sqrt{2} }{5 - 2}

(\because √a × √a = a)

 =  \frac{ \sqrt{5} -  \sqrt{2}  }{3}

\bigstarAnswers:

 1.   \sqrt{7}  +  \sqrt{6}

2. \:  \: \frac{ \sqrt{5} -  \sqrt{2}  }{3}

Similar questions