Math, asked by IshanSinghTomar, 1 month ago

rationalize the denominator of 1/2√5-√3​

Attachments:

Answers

Answered by Flaunt
6

\sf\huge {\underline{\underline{{Solution}}}}

\sf\implies \dfrac{1}{2 \sqrt{5}  -  \sqrt{3} }

\sf\:Now, \:Multiply \:both \:numerator\sf\: and \:denominator \:with\: opposite\sf\: sign \:of \:denominator \:term.

\sf\implies \dfrac{1}{2 \sqrt{5}  -  \sqrt{3} }  \times  \dfrac{2 \sqrt{5}  +  \sqrt{3} }{2 \sqrt{5} +  \sqrt{3}  }

\sf\implies \dfrac{2 \sqrt{5}  +  \sqrt{3} }{(2 \sqrt{5} -  \sqrt{3})(2 \sqrt{5}  +  \sqrt{3} )  }

\sf\:Here, \:in \:the\: denominator \sf\:an\: identity\: is \:used:

\sf \bold {\boxed{(x + y)(x - y) =  {x}^{2}  -  {y}^{2} }}

\sf\implies \dfrac{2 \sqrt{5} +  \sqrt{3}  }{ {(2 \sqrt{5} )}^{2} -  {( \sqrt{3}) }^{2}  }

\sf\implies \dfrac{2 \sqrt{5}  +  \sqrt{3} }{20 - 3}

\sf\implies \dfrac{2 \sqrt{5}  +  \sqrt{3} }{17}

\sf \therefore \dfrac{2 \sqrt{5} +  \sqrt{3}  }{17}  \: is \: the \: rationalised \: form

Learn to know =>

\sf\:Rationalising\: means \:removing \sf\:the\: root\: values\: from\sf\: its\: denominator \:and \sf\:shifts\: towards\: the \:numerator.

Similar questions