Math, asked by R2585, 1 year ago

Rationalize the denominator of 1/3-√2​

Answers

Answered by Anonymous
7

Solution :

 \frac{1}{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 \ + \sqrt{2} }  \\   \frac{3 +  \sqrt{2} }{ {3}^{2} - ( { \sqrt{2} }^{2})  }  \\  \frac{3 +  \sqrt{2} }{9 - 2 }  \\  \frac{3 +  \sqrt{2} }{7}

Answered by HAPPYBABY
2

Answer:

\huge\mathcal\colorbox{blue}{{\color{white}{AŋʂᏯɛཞ࿐}}}

 \frac{1}{3 -  \sqrt{2} }  =  \frac{1}{3 -  \sqrt{2} }   \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }   \\  =  \frac{3 +  \sqrt{2} }{(3 +  \sqrt{2)(3 -  \sqrt{2} } }  =  \frac{3 +  \sqrt{2} }{ {3}^{2}  -  \sqrt{ {2}^{2} } }  =  \frac{3 +  \sqrt{2} }{9 - 2}  =  \frac{3 +  \sqrt{2} }{7} or \frac{1}{7} (3 +  \sqrt{2)}

Similar questions