Math, asked by lalshetharavikumar, 8 months ago

rationalize the denominator of 1/√3-√2​

Answers

Answered by Uniquedosti00017
4

Answer:

 \frac{1}{ \sqrt{3} -  \sqrt{2}  }  \\  =  \frac{1}{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\  =   \frac{ \sqrt{3}  +  \sqrt{2} }{ { \sqrt{3} }^{2} -  { \sqrt{2} }^{2}  }  \\  =  \frac{ \sqrt{3}  \ +  \sqrt{2}  }{3 - 2}  \\  =  \sqrt{3}   + \sqrt{2}

Answered by ItzAditt007
3

To Rationalize,

  • Thebdenominator of \sf\large\frac{1}{sqrt{3} - sqrt{2}}

Concept Used:-

\sf \mapsto \frac{a}{a}  = 1 \\  \\\sf \mapsto \:  \frac{x}{a} \times  \frac{a}{a}   =  \frac{x}{a}

ID Used:-

\sf \leadsto \: (a + b)(a - b) =  {a}^{2} -  {b}^{2}.

Now,

\sf\implies \frac{1}{ \sqrt{3} -  \sqrt{2}  }  \\  \\  =  \frac{1}{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2}  }  \\  \\  =  \frac{1( \sqrt{3}   +   \sqrt{2}) }{( \sqrt{3} -  \sqrt{2})( \sqrt{3}  +  \sqrt{2})   }  \\  \\  =  \frac{ \sqrt{3}  +  \sqrt{2} }{( \sqrt{3}) {}^{2} - ( \sqrt{2}) {}^{2}    } \\  \\  =  \frac{ \sqrt{3} +  \sqrt{2}  }{3 - 2}  \\  \\  =  \frac{ \sqrt{3} +  \sqrt{2}  }{1} \\  \\    \large \fbox\pink{ =  \sqrt{3}  +  \sqrt{2} .}

Similar questions