Math, asked by Anonymous, 30 days ago

Rationalize the denominator of 1/√7+√6−√13

Answers

Answered by jhajhariasanshray
2

1/(√7+√6-√13)

Rationalising factor = √7+√6+√13

→ 1/(√7+√6-√13) × √7+√6+√13/(√7+√6+√13)

→ √7+√6+√13/(√7+√6-√13)(√7+√6+√13)

→ √7+√6+√13/(√7+√6)²-(√13)²

→ √7+√6+√13/(√7²+√6²+2(√7)(√6))-13

→ √7+√6+√13/13+2√42-13

→ √7+√6+√13/2√42

The denominator is still irrational. So we have to rationalise it further.

Now rationalising factor = √42

→ √7+√6+√13/2√42 × √42/√42

→ √42(√7+√6+√13)/2(√42)²

→ √42×7+√42×6+√42×13/2(42)

→ (7√6+6√7+√546)/84

→ 7√6/84 + 6√7/84 + √546/84

→ √6/12 + √7/14 + √546/84

Now the denominator is rationalised.

Answered by geetalibora19
2

Answer:

 \frac{ \sqrt{6} }{12}  +  \frac{ \sqrt{7} }{14}  +  \frac{ \sqrt{546} }{84}

Step-by-step explanation:

 \frac{1}{ \sqrt{7}  +  \sqrt{6}   -  \sqrt{13} }

 \frac{ \sqrt{7}  +  \sqrt{6} +  \sqrt{13}  }{( \sqrt{7} +  { \sqrt{6} )}^{2}   - 13}

 \frac{ \sqrt{7} +  \sqrt{6}  +  \sqrt{13}  }{2 \sqrt{42} }

 \frac{ \sqrt{6} }{12}  +  \frac{ \sqrt{7} }{14}  +  \frac{ \sqrt{546} }{84}

Similar questions