Math, asked by shs0920148nitya, 7 months ago

rationalize the denominator of 1+ root 6 / 7 + root 2​

Answers

Answered by Anonymous
13

Given :-

  •  \tt \:  \frac{1 +  \sqrt{6} }{7 +  \sqrt{2} }

To Find :-

  • Rationalize the denominator.

Solution :-

 \mapsto \:  \tt \:  \frac{1 +  \sqrt{6} }{7 +  \sqrt{2} }

 \mapsto \tt \:  \frac{1 +  \sqrt{6} }{7 +  \sqrt{2} }  \times  \frac{7 -  \sqrt{2} }{7 -  \sqrt{2} }

 \mapsto \tt \:  \frac{(1 +  \sqrt{6} ) \times (7 -  \sqrt{2} )}{(7 -  \sqrt{2} ) \times (7 -  \sqrt{2}) }

 \mapsto \tt \:  \frac{1(7 -  \sqrt{2} ) +  \sqrt{6}(7 -  \sqrt{2} ) }{(7  +  \sqrt{2})  \times (7 -  \sqrt{2} )  }

 \mapsto \tt \:  \frac{7 -  \sqrt{2} + 7 \sqrt{6}  -  \sqrt{12}  }{49 - 2}

\mapsto \tt \:   \boxed{  \red{\frac{7 -  \sqrt{2}  + 7 \sqrt{ 6 } -  \sqrt{12}  }{47} }}

Formulae Used :-

  • (a + b) (a - b) = a² - b²
Similar questions