Math, asked by ronweasley5972, 4 months ago

Rationalize the denominator of 16/root 45-5

Answers

Answered by Anonymous
0

Answer:

So, in order to rationalize the denominator, we need to get rid of all radicals that are in the denominator.

Step 1: Multiply numerator and denominatorby a radical that will get rid of the radical in the denominator. ...

Step 2: Make sure all radicals are simplified. ...

Step 3: Simplify the fraction if needed.

Answered by Anonymous
0

Answer:

41

−5

16

=(

41

+5)

Step-by-step explanation:

Given: \frac{16}{\sqrt{41}-5}

41

−5

16

WE have to rationalize the denominator.

Consider the given fraction \frac{16}{\sqrt{41}-5}

41

−5

16

Multiply and divide by (\sqrt{41}+5)(

41

+5) , we get,

\frac{16}{\sqrt{41}-5}\times \frac{\sqrt{41}+5}{\sqrt{41}+5}

41

−5

16

×

41

+5

41

+5

Thus,

Denominator becomes (a+b)(a-b)=a^2-b^2(a+b)(a−b)=a

2

−b

2

We have,

(\sqrt{41}+5)(\sqrt{41}-5)=(\sqrt{41})^2-5^2=41-25=16(

41

+5)(

41

−5)=(

41

)

2

−5

2

=41−25=16

Thus, \frac{16}{\sqrt{41}-5}\times \frac{\sqrt{41}+5}{\sqrt{41}+5}=\frac{16(\sqrt{41}+5)}{16}=(\sqrt{41}+5)

41

−5

16

×

41

+5

41

+5

=

16

16(

41

+5)

=(

41

+5)

Thus, \frac{16}{\sqrt{41}-5}=(\sqrt{41}+5)

41

−5

16

=(

41 +5)

Similar questions