Math, asked by ananyakumbhalkar94, 11 months ago

rationalize the denominator of 2√3/√11-√10​

Answers

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{2 \sqrt{3} }{ \sqrt{11} -  \sqrt{10}  } =2 \sqrt{33}  + 2 \sqrt{30}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  \frac{2 \sqrt{3} }{ \sqrt{11} -  \sqrt{10}  }  \\  \\ \red{\underline \bold{To \: Find :}} \\ \tt:  \implies  \frac{2 \sqrt{3} }{ \sqrt{11} -  \sqrt{10}  } = ?

• According to given question :

 \bold{As \: we \: know \: that} \\\tt:  \implies  \frac{2 \sqrt{3} }{ \sqrt{11} -  \sqrt{10}  }  \\  \\  \tt \circ \: Multiplying \:  \:  \frac{ \sqrt{11}  +  \sqrt{10} }{ \sqrt{11} +  \sqrt{10}  }  \\  \\ \tt:  \implies  \frac{2 \sqrt{3} }{ \sqrt{11} -  \sqrt{10}  }  \times  \frac{ \sqrt{11} +  \sqrt{10}  }{ \sqrt{11} +  \sqrt{10}  }  \\  \\ \tt:  \implies  \frac{2 \sqrt{3}( \sqrt{11}  +  \sqrt{10} ) }{( \sqrt{11} -  \sqrt{10} )( \sqrt{11}  + \sqrt{10})  } \\ \\ \tt \circ \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}   \\   \\ \tt:  \implies  \frac{2 \sqrt{33} + 2 \sqrt{30}   }{ (\sqrt{11})^{2} -  (\sqrt{10})^{2}   }  \\  \\ \tt:  \implies  \frac{2 \sqrt{33} + 2 \sqrt{30}   }{11 - 10 } \\  \\  \green{\tt:  \implies  2 \sqrt{33}  +  2\sqrt{30} } \\  \\   \green{\tt \therefore\frac{2 \sqrt{3} }{ \sqrt{11} -  \sqrt{10}  } =2 \sqrt{33}  + 2 \sqrt{30} }

Answered by Saby123
29

....

 \tt{\huge{\purple{ ................. }}}

QUESTION :

rationalize the denominator of 2√3/√11-√10.

SOLUTION :

 \dfrac{2 \sqrt{3} }{ \sqrt{11} -  \sqrt{10} }

 Rationalizing \: Factor \: :- \dfrac{\sqrt{11} + \sqrt{10}}{\sqrt{11} - \sqrt{10}}

 \dfrac{2 \sqrt{3} }{ \sqrt{11} -  \sqrt{10} }  \times  \dfrac{ { \sqrt{11} +  \sqrt{10} } }{ \sqrt{11} +  \sqrt{10}  }

 => 2 \sqrt{ 3 } × ( \sqrt{11} + \sqrt{10}

 => 2\sqrt{33} + 2 \sqrt{30}

Similar questions