Math, asked by smitapanda5028, 10 months ago

rationalize the denominator of √2÷√6-√2 ​

Answers

Answered by TheDivineSoul
0

Step-by-step explanation:

this would be a correct answer bro

Attachments:
Answered by Anonymous
10

Answer:

{\sf{ {\dfrac{ {\sqrt{3}} + 1}{2}} }}

Step-by-step explanation:

Given : {\sf{\ \ {\dfrac{ {\sqrt{2}} }{ {\sqrt{6}} - {\sqrt{2}} }} }}

\Rightarrow{\sf{ {\dfrac{ {\sqrt{2}} }{ {\sqrt{6}} - {\sqrt{2}} }} \times {\dfrac{ {\sqrt{6}} + {\sqrt{2}} }{ {\sqrt{6}} + {\sqrt{2}} }} }}

\Rightarrow{\sf{ {\dfrac{ ( {\sqrt{2}} )( {\sqrt{6}} + {\sqrt{2}} )}{ ( {\sqrt{6}} - {\sqrt{2}} )( {\sqrt{6}} + {\sqrt{2}} ) }}}}

{\boxed{\sf{\red{Identity \ : \ (a - b)(a + b) = a^2 - b^2}}}}

{\sf{\red{Here, \ a = {\sqrt{6}} , \ b = {\sqrt{2}} }}}

\Rightarrow{\sf{ {\dfrac{ ( {\sqrt{2}} )( {\sqrt{6}} + {\sqrt{2}} )}{ ( {\sqrt{6}} )^2 - ( {\sqrt{2}} )^2 }}}}

\Rightarrow{\sf{ {\dfrac{ ( {\sqrt{2}} )( {\sqrt{6}} ) + ( {\sqrt{2}} )( {\sqrt{2}} ) }{ 6 - 2 }} }}

\Rightarrow{\sf{ {\dfrac{ {\sqrt{2 \times 2 \times 3}} + {\sqrt{2 \times 2}} }{ 4 }} }}

\Rightarrow{\sf{ {\dfrac{2 {\sqrt{3}} + 2}{4}} }}

\Rightarrow{\sf{  {\dfrac{2 ( {\sqrt{3}} + 1 )}{4}} }}

\Rightarrow{\boxed{\sf{\green{ {\dfrac{ {\sqrt{3}} + 1}{2}} }}}}

Similar questions