Math, asked by sofiya5, 1 year ago

rationalize the denominator of 2/root 3-root 5 rationalize the denominator of 2 divided by root 3 minus root 5

Answers

Answered by daschandana728
75

Answer:

Step-by-step explanation:

2

___

root 3-root 5

(we have to multiply both numerator and denominator by root 3+root 5)

then,

(2×root 3)+(2×root 5)

= ________________

3-5

(taking 2 common)

= 2(root 3 +root 5)

____________

-2

= (root 3 +root 5)÷ (-1)

= -root 3 -root 5

Hope it will help

Answered by qwsuccess
16

Given: An expression-  \frac{2}{\sqrt{3}  \ - \ \sqrt{5} }

To find: Rationalized value of the denominator of given expression

Solution:

Considering the expression \frac{2}{\sqrt{3}  \ - \ \sqrt{5} },

we know that (\sqrt{a}  +\sqrt{b} )(\sqrt{a}  - \sqrt{b}) = a  - b

(\sqrt{3} - \sqrt{5} )(\sqrt{3} +  \sqrt{5} ) = 3 - 5 = -2 , which is a rational number.

Therefore, to rationalize the denominator of given expression, we need to multiply the numerator and denominator by (\sqrt{3} + \sqrt{5} )

\frac{2}{\sqrt{3} \ - \sqrt{5} } = \frac{2}{\sqrt{3} \ - \sqrt{5} } \ * \ \frac{\sqrt{3} \ + \  \sqrt{5} }{\sqrt{3} \ + \  \sqrt{5} }

\frac{2(\sqrt{3} \ + \ \sqrt{5}) }{3 \ - \ 5} = \frac{2(\sqrt{3} \ + \ \sqrt{5})}{-2}

- (\sqrt{3} \ + \  \sqrt{5}) = -\sqrt{3} \ - \ \sqrt{5}

Hence, the rationalized value of the given expression is  (-\sqrt{3} \ - \ \sqrt{5}).

Similar questions