Math, asked by sammy45, 1 year ago

rationalize the denominator of 3 root 5 + root 3/root 5 - root 3

Answers

Answered by Haezel
127

Answer:

By rationalizing the denominator of \frac{3 \sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} get the answer as \bold{9+2 \sqrt{15}}

Step-by-step explanation:

Rationalizing the denominator means multiplying the numerator in a fraction by the value of the denominator but by its opposite signed value.

Now to rationalize the above figure we multiply both the numerator and denominator by [√5+√3]

\left[\frac{3 \sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\right]\left[\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right]

On removing the brackets and multiplying,

=\frac{3 \sqrt{5}+\sqrt{3} \cdot \sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3} \cdot \sqrt{5}+\sqrt{3}}

The denominator is multiplied by using the formula \bold{(a+b)(a-b)=a^{2}-b^{2}}

Taking a=√5 and b=√3

\frac{3 \sqrt{5}+\sqrt{3} \cdot \sqrt{5}+\sqrt{3}}{(\sqrt{5})^{2}-(\sqrt{3})^{2}}=\frac{3 \sqrt{5}+\sqrt{3} \cdot \sqrt{5}+\sqrt{3}}{5-3}

\begin{array}{l}{\frac{3 \sqrt{5}+\sqrt{3} \cdot \sqrt{5}+\sqrt{3}}{2}=\frac{18+4 \sqrt{15}}{2}} \\ {\frac{18}{2}+\frac{4 \sqrt{15}}{2}=9+2 \sqrt{15}}\end{array}

By rationalizing the denominator of \frac{3 \sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} get the answer as \bold{9+2 \sqrt{15}}

Answered by cheema421
34

Step-by-step explanation:

........,.................

Attachments:
Similar questions