Math, asked by uday130, 1 year ago

rationalize the denominator of 4/ 2 +√3 +√7

Answers

Answered by ria113
381
☺☺ HERE IS YOUR ANSWER ☺☺
Attachments:
Answered by mysticd
178

Answer:

\frac{4}{2+\sqrt{3}+\sqrt{7}}= \frac{(2\sqrt{3}+3-\sqrt{21})}{3}

Explanation:

Given \frac{4}{2+\sqrt{3}+\sqrt{7}}

multiply numerator and denominator by (2+3-7), we get

=\frac{4(2+\sqrt{3}-\sqrt7)}{[(2+\sqrt{3})+\sqrt{7}][(2+\sqrt{3})-\sqrt{3}]}

= \frac{4(2+\sqrt{3}-\sqrt{7})}{\left(2+\sqrt{3}\right)^{2}-\left(\sqrt{7}\right)^{2}}

= \frac{4(2+\sqrt{3}-\sqrt{7})}{2^{2}+2\times2\times\sqrt{3}+\left(\sqrt{3}\right)^{2}-7}

=\frac{4(2+\sqrt{3}-\sqrt{7})}{4+4\sqrt{3}+3-7}

=\frac{4(2+\sqrt{3}-\sqrt{7})}{4\sqrt{3}}

=\frac{(2+\sqrt{3}-\sqrt{7})}{\sqrt{3}}

Rationalising the denominator, we get

= \frac{(2+\sqrt{3}-\sqrt{7})\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}

= \frac{(2\sqrt{3}+3-\sqrt{21})}{3}

Therefore,

\frac{4}{2+\sqrt{3}+\sqrt{7}}= \frac{(2\sqrt{3}+3-\sqrt{21})}{3}

••••

Similar questions