Math, asked by Meddk, 1 year ago

Rationalize the denominator of 4/2+root3+root7

Answers

Answered by ria113
420
Heya !!

Here's your answer.. ⬇⬇

______________________________

 =  \frac{4}{2 +  \sqrt{3} +  \sqrt{7}  }  \\  \\   =  \frac{4}{(2 +  \sqrt{3)}  +  \sqrt{7} } \\  \\  =  \frac{4}{(2 +  \sqrt{3)} +  \sqrt{7}  }  \times  \frac{(2 +  \sqrt{3)}  -  \sqrt{7} }{(2 +  \sqrt{3)}  -  \sqrt{7}}  \\  \\=  =  >  \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\  \\   = \frac{4(2 +  \sqrt{3}  -  \sqrt{7}) }{ {(2 +  \sqrt{3}) }^{2}  -  {( \sqrt{7} )}^{2} }    \\ \\   =  \frac{4(2 +  \sqrt{3}  -  \sqrt{7})}{4 + 4 \sqrt{3}  + 3 - 7}  \\  \\  =  \frac{4(2 +  \sqrt{3}  -  \sqrt{7})}{4 \sqrt{3} + 7 - 7 }  \\  \\  =  \frac{4(2 +  \sqrt{3}  -  \sqrt{7})}{4 \sqrt{3} }  \\  \\  =  \frac{(2 +  \sqrt{3}  -  \sqrt{7})}{ \sqrt{3} }  \\  \\  = \frac{(2 +  \sqrt{3}  -  \sqrt{7})}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \\  \\  =  \frac{2 \sqrt{3}  + 3  -  \sqrt{21} }{3}  \\  \\

________________________________
Hope it helps

Thanks :))

jyonukavarapu: awesome dude
ria113: Thanks (:
jyonukavarapu: please can you answer one more question
Answered by RenatoMattice
71

Answer: Our rationalized form is

\frac{1}{12}(8\sqrt{3}+12-16\sqrt{21})

Step-by-step explanation:

Since we have given that

\frac{4}{2+\sqrt{3}+\sqrt{7}}\\

We will rationalizing the denominator:

\frac{4}{2+\sqrt{3}+\sqrt{7}}\\\\=\frac{4}{(2+\sqrt{3})+\sqrt{7}}\times \frac{(2+\sqrt{3}-\sqrt{7})}{(2+\sqrt{3}-\sqrt{7})}\\\\=\frac{4(2+\sqrt{3}-\sqrt{7})}{(2+\sqrt{3})^2-7}\\\\=\frac{8+4\sqrt{3}-16\sqrt{7}}{4+3+4\sqrt{3}-7}\\\\=\frac{(8+4\sqrt{3}-16\sqrt{7})\times \sqrt{3}}{4\sqrt{3}\times \sqrt{3}}\\\\=\frac{8\sqrt{3}+12-16\sqrt{21}}{12}\\\\=\frac{1}{12}(8\sqrt{3}+12-16\sqrt{21})

Hence, our rationalized form is

\frac{1}{12}(8\sqrt{3}+12-16\sqrt{21})

Similar questions