Math, asked by kumaramir, 1 year ago

rationalize the denominator of 4 by 2 + root 3 + root 7
4 \div 2 +  \sqrt{3 +  \sqrt{7} }

Answers

Answered by hukam0685
5

 =  \frac{4}{2 +  \sqrt{3}  +  \sqrt{7} }  \\  =  \frac{4}{(2 +  \sqrt{3})  +  \sqrt{7}  }  \times  \frac{(2 +  \sqrt{3}) -  \sqrt{7}  }{(2 +  \sqrt{3} ) -  \sqrt{7} }  \\  =  \frac{8 + 4 \sqrt{3}  - 4 \sqrt{7} }{4 + 3 + 4 \sqrt{3}  - 7}  \:  \:  \:  \:  \:  \: by \: open \: identity \: in \: denominator \\   = \frac{8 + 4 \sqrt{3} - 4 \sqrt{7}  }{4 \sqrt{3} }  \\  =  \frac{2 +  \sqrt{3}  -  \sqrt{7} }{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \\  =  \frac{2 \sqrt{3} + 3 -  \sqrt{21}  }{3}  \\  =  \frac{3  + 2 \sqrt{3} -  \sqrt{21}  }{3}  \:  \:  \:  \:  \: ans
Similar questions