Math, asked by ganashekar609, 18 days ago

rationalize the denominator of 5√3 / √5-√2
step by step pls​

Answers

Answered by meghanakaruparty
1

Step-by-step explanation:

5√3/ √5-√2

multiply √5+√2 in numerayor and denominator

=

Answered by arpanakumari17
0

Answer:

Solution:

\dfrac{5}{\sqrt{3} -\sqrt{5} }

3

5

5

Rationalize the denominator

=\dfrac{5}{\sqrt{3} -\sqrt{5} } \times \dfrac{\sqrt{3} +\sqrt{5} }{\sqrt{3} +\sqrt{5} }=

3

5

5

×

3

+

5

3

+

5

apply Distributive property and use (a + b)(a - b) = a² - b²

= \dfrac{5\sqrt{3} +5\sqrt{5} }{(\sqrt{3})^2 -(\sqrt{5})^2 }=

(

3

)

2

−(

5

)

2

5

3

+5

5

(√a)² = a

= \dfrac{5\sqrt{3} +5\sqrt{5} }{3 -5 }=

3−5

5

3

+5

5

= \dfrac{5\sqrt{3} +5\sqrt{5} }{-2 }=

−2

5

3

+5

5

= -\dfrac{5\sqrt{3}}{2 }- \dfrac{ 5\sqrt{5} }{2 }=−

2

5

3

2

5

5

= -\dfrac{5 }{2 }\left( \sqrt{3} + \sqrt{5}\right)=−

2

5

(

3

+

5

)

\dfrac{5}{\sqrt{3} -\sqrt{5} }

3

5

5

= -\dfrac{5 }{2 }\left( \sqrt{3} + \sqrt{5}\right)=−

2

5

(

3

+

5

)

Similar questions