Math, asked by Dineshsharma9991, 1 year ago

Rationalize the denominator of 5/(√3 - √5)

Answers

Answered by BloomingBud
45
\mathbb{ SOLUTION } :

For rationalising the denominator, we will multiply the numerator and denominator by conjugate of denominator to remove the radical sign from the denominator.

Denominator of \frac{5}{ \sqrt{3} - \sqrt{5} } is  (\sqrt{3} - \sqrt{5})

Here, the conjugate of denominator  (\sqrt{3} - \sqrt{5}) is  (\sqrt{3} + \sqrt{5})

 =  \frac{5}{ \sqrt{3}  -  \sqrt{5} }  \times  \frac{ \sqrt{3}  +  \sqrt{5} }{ \sqrt{3}  +  \sqrt{5} }  \:  \:  \: (by \:  \: rationalisation) \\  \\   \\  =  \frac{5( \sqrt{3} +  \sqrt{5} ) }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{5}) }^{2} }  \:  \:  \:   \: \: ( \therefore \: (a  -   b)(a  +  b) =  {a}^{2}  -  {b}^{2}  \: ) \\  \\  \\  =  \frac{5( \sqrt{3} +  \sqrt{5} ) }{3 - 5}  \\  \\  \\  =  -  \frac{5}{2} ( \sqrt{3}  +  \sqrt{5} )

lucky295526: hlw
lucky295526: good morning
Answered by Anonymous
20
Hey there !!


▶ Q. Rationalize the denominator of  \frac{5}{ \sqrt{3}  -  \sqrt{5} } .


▶ Solution :-


 \bf =  \frac{5}{ \sqrt{3}  -  \sqrt{5} } .

 \bf = \frac{5}{ \sqrt{3}  -  \sqrt{5} }  \times   \frac{ \sqrt{3}  +  \sqrt{5}  }{ \sqrt{3} +  \sqrt{5}  } .

 \bf  = \frac{5( \sqrt{3}  +  \sqrt{5} )}{( \sqrt{3} -  \sqrt{5} )( \sqrt{3} +  \sqrt{5}   )} .



 \bf  =  \frac{5( \sqrt{3}  +  \sqrt{5} )}{( { \sqrt{3} )}^{2}  - ( { \sqrt{5} )}^{2} } .


 \bf =  \frac{5 \sqrt{3}   +  5 \sqrt{5} }{3 - 5} .


 \bf =  \frac{5 \sqrt{3}  + 5 \sqrt{5} }{ - 2} .


  \boxed{\bf  =  \frac{ - 5 \sqrt{3} - 5 \sqrt{5}  }{2} .}

OR

 \boxed { \bf =  \frac{ - 5}{2} ( \sqrt{3}  +  \sqrt{5} ).}


✔✔ Hence, it is solved ✅✅.

____________________________________



THANKS


#BeBrainly.
Similar questions