Math, asked by karankirat345, 1 year ago

rationalize the denominator of

Attachments:

Answers

Answered by KaranMaheshwari167
2
Refer to the above Solution please....

HOPE IT HELPS...
Attachments:

KaranMaheshwari167: thanks
karankirat345: my pleasure
Answered by BrainlyPromoter
1
 \frac{1}{ \sqrt{7} + \sqrt{6} - \sqrt{13} } \\ \\ = > \frac{1}{( \sqrt{7} + \sqrt{6} ) - \sqrt{13} } \\ \\ = > \frac{1}{( \sqrt{7} + \sqrt{6} ) - \sqrt{13} } \times \frac{( \sqrt{7} + \sqrt{6}) + \sqrt{13} }{( \sqrt{7} + \sqrt{6}) + \sqrt{13} } \\ \\ = > \frac{( \sqrt{7} + \sqrt{6}) + \sqrt{13} }{ {( \sqrt{7} + \sqrt{6} )}^{2} - {( \sqrt{13}) }^{2} } \\ \\ = > \frac{ \sqrt{7} + \sqrt{6} + \sqrt{13} }{7 + 6 + 2 \sqrt{42} - 13} \\ \\ = > \frac{ \sqrt{7} + \sqrt{6} + \sqrt{13} }{2 \sqrt{42} } \\ \\ = > \frac{1}{2} ( \frac{ \sqrt{7} + \sqrt{6} + \sqrt{13} }{\sqrt{42} } )

=> 1/2*[(√7 + √6 + √13)/√42]*√42/√42
=> 1/2*[(√294 + √252 + √78)/42]
=> (√294 + √252 + √78)/84
Hence, we arrive at our answer.
Similar questions