Math, asked by michaelgimmy, 3 months ago

Rationalize the Denominator of each of the following.
(a) \bold {\frac{\sqrt{3} - \sqrt{5}}{\sqrt{3} + \sqrt {5}}}
_____
CLUE : Rationalizing Factor = \bold {\sqrt {3} - \sqrt {5}}

Answers

Answered by Anonymous
19

\Large{\underline{\underline{\textsf{\maltese\: {\red{Question :-}}}}}}

Rationalize the denominator of each of the following

(a) \bf\dfrac{\sqrt3 - \sqrt5}{\sqrt3 + \sqrt5}

\\

\Large{\underline{\underline{\textsf{\maltese\: {\red{Concept Implemented :-}}}}}}

⏣ Multiply both numerator as well as denominator of the fraction with the conjugate pair.

⏣ A pair of conjugates is a pair of binomials that are exactly the same except that the signs between the terms are opposite. To create a conjugate of a binomial, just rewrite it and change the sign of the second term.

✦ Example : The conjugate pair of (a + b) is (a - b)

\\

⏣ Need to use some Algebraic Identities :-

✦ (a + b)² = a² + b² + 2ab

✦ (a - b)² = a² + b² - 2ab

✦ (a + b) (a - b) = a² - b²

\\

\Large{\underline{\underline{\textsf{\maltese\: {\red{Solution :-}}}}}}

\sf\dfrac{\sqrt3 - \sqrt5}{\sqrt3 + \sqrt5}

\\

\sf = \dfrac{\sqrt3 - \sqrt5}{\sqrt3 + \sqrt5} * \dfrac{\sqrt3 - \sqrt5}{\sqrt3 - \sqrt5} \; \;[Multipling\; both \;numerator \;and \;denominator\; with\; conjugate \;pair\; of \;(\sqrt3 + \sqrt5) \; ie.\; (\sqrt3-\sqrt5) ]

\\

 \sf = \dfrac{(\sqrt3 - \sqrt5) \; (\sqrt3-\sqrt5) }{(\sqrt3 + \sqrt5) \;  (\sqrt3-\sqrt5) }

\\

\sf = \dfrac{(\sqrt3)^2 +(\sqrt5)^2 -(2*\sqrt3*\sqrt5)}{(\sqrt3)^2 - (\sqrt5)^2}\;\;[Using \; (a-b)^2 = a^2+b^2-2ab\; and \;(a + b)(a - b)= a^2-b^2 ]

\\

 \sf = \dfrac{3+5-2\sqrt{15}}{3-5}

\\

 \sf = \dfrac{8 - 2\sqrt{15}}{-2}

\\

 \sf = \dfrac{-(8 - 2\sqrt{15})}{2}

\\

 \sf = \dfrac{-8+2\sqrt{15}}{2}

\\

 \sf = \dfrac{2\sqrt{15}-8}{2}

\\

∴ The rationalized from of \bf\dfrac{\sqrt3 - \sqrt5}{\sqrt3 + \sqrt5}   is  \bf\dfrac{2\sqrt{15}-8}{2} after rationalizing the denominator.


Anonymous: Is my answer correct ?
michaelgimmy: I had finished my Answer by the Last Third Step... After that, I didn't get it (understand).. So, I asked it..
michaelgimmy: By the Way, You give Great Answers!
Anonymous: yeah
Answered by sharanyalanka7
4

Step-by-step explanation:

\huge\sf\underline\green{answer}

rationalize:

\frac{ \sqrt{3} -  \sqrt{5}  }{ \sqrt{3} +  \sqrt{5}  }

 \frac{ \sqrt{3} -  \sqrt{5}  }{ \sqrt{3} +  \sqrt{5}  } \times   \frac{ \sqrt{3}  -  \sqrt{5}  }{ \sqrt{3}  -   \sqrt{5}  }

 \frac{( \sqrt{3} -  \sqrt{5}) {}^{2}   }{3 - 5}

 \frac{3 + 5 - 2 \sqrt{15} }{ - 2}

 \frac{8 - 2 \sqrt{15} }{ - 2}

Similar questions