Math, asked by donthulavasavi, 2 months ago

Rationalize the denominator of sqrt5 - sqrt3 / sqrt5 + sqrt3​

Answers

Answered by agarwallas460
0

Answer:

4 -  \sqrt{15}

Step-by-step explanation:

 \frac{ \sqrt{5} -  \sqrt{3} }{ \sqrt{5} +  \sqrt{3} }

=

 \frac{( \sqrt{5} -  \sqrt{3})( \sqrt{5} -  \sqrt{3})}{( \sqrt{5} + \sqrt{3})( \sqrt{5} -  \sqrt{3})}

=

 \frac{ ({ \sqrt{5} -  \sqrt{3} })^{2} }{ ({ \sqrt{5} })^{2} -  ({ \sqrt{3} })^{2}  }

=

 \frac{({ \sqrt{5} })^{2} +({ \sqrt{3} })^{2} - 2 \times  \sqrt{5} \times  \sqrt{3}}{5 - 3}

=

 \frac{5 + 3 - 2 \times  \sqrt{5 \times 3} }{2}

=

 \frac{8 - 2 \times  \sqrt{15} }{2}

=

 \frac{2(4 -  \sqrt{15}) }{2}

=

4 -  \sqrt{15}

plz mark the brainliest if the answer was helpful

Similar questions