Math, asked by divya9316, 11 months ago

rationalize the denominator of..
3 -  \sqrt{5}  \div 3 + \sqrt{5}
step by step..


Answers

Answered by thatonesuket
2

Answer:

Step-by-step explanation:

\frac{3-\sqrt{5} }{3+\sqrt{5} }

\\\frac{3-\sqrt{5} }{3+\sqrt{5} } * \\\frac{3-\sqrt{5} }{3-\sqrt{5} }

\frac{(3-\sqrt{5})^{2}  }{3^{2} -(\sqrt{5}  )^{2} }

\frac{9+5-6\sqrt{5} }{9-5}

\frac{14-6\sqrt{5} }{4}

\frac{7-3\sqrt{5} }{2}

Hope this helps you,

Please mark as brainliest

Thanks!

Answered by Cosmique
1

 \large{ \underline{ \bf{question}}}

Rationalize the denominator of

\tt \:  \frac{3 -  \sqrt{5} }{3 +  \sqrt{5} }

Step by step.

\large{ \underline{ \bf{answer}}}

We have,

\tt \color{brown}  \frac{3 -  \sqrt{5} }{3 +  \sqrt{5} }

Multiplying by (3 - √5) in both Numerator and denominator

 \tt \color{brown} \frac{3 -  \sqrt{5} }{3 +  \sqrt{5} }  \times  \frac{3  -    \sqrt{5}  }{3  -   \sqrt{5} }

Using algebraic identities

\small {\bf \: (x + y)(x - y) = {x}^{2} -  {y}^{2}   }

and

\small{ \bf  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}

we will get,

 \tt \color{brown} \frac{ {3}^{2} +  { {( \sqrt{5}) }^{2}  + 2(3)( \sqrt{5} ) }  }{ {3}^{2} -  {( \sqrt{5}) }^{2}  }  \\  \\  \tt \color{brown} \frac{9 + 5 + 6 \sqrt{5} }{9 - 5}  \\  \\  \tt \color{brown} \frac{14 + 6 \sqrt{5} }{4}

Taking 2 common in numerator and also in denominator

 \tt \color{brown} \frac{2(7 + 3 \sqrt{5} )}{2(2)}  \\  \\  \tt \color{brown} \frac{ 7 + 3 \sqrt{5} }{2}

(Ans.)

Similar questions