Math, asked by michaelgimmy, 2 months ago

Rationalize the Denominator of \Big (\dfrac{1 + \sqrt 2}{\sqrt 5 + \sqrt 3} \Big ) + \Big (\dfrac{1 - \sqrt 2}{\sqrt 5 - \sqrt 3}\Big )

Answers

Answered by Anonymous
40

Given to Rationalize the denominator :-

Rationalize the Denominator of \Big (\dfrac{1 + \sqrt 2}{\sqrt 5 + \sqrt 3} \Big ) + \Big (\dfrac{1 - \sqrt 2}{\sqrt 5 - \sqrt 3}\Big )

Solution :-

We will do separately take the first term and we shall solve it

 \dfrac{1 +  \sqrt{2} }{ \sqrt{5} +  \sqrt{3}  }

In order to rationalize the denominator we have to multiply and divide with its Rationalizing factor

Rationalizing factor for

 \sqrt{5}  +  \sqrt{3}  \:  \: is \:  \:  \sqrt{5}  -  \sqrt{3}

 \dfrac{1 +  \sqrt{2} }{ \sqrt{5}  +  \sqrt{3} }  \times   \dfrac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }

 \dfrac{(1 +  \sqrt{2})( \sqrt{5} -  \sqrt{3} )  }{( \sqrt{5}  +  \sqrt{3})( \sqrt{5} -  \sqrt{3})   }

 \dfrac{ \sqrt{5}  -  \sqrt{3} +  \sqrt{10} -  \sqrt{6}   }{( \sqrt{5}) {}^{2}  - ( \sqrt{3}) {}^{2}   }

 \dfrac{ \sqrt{5}  -  \sqrt{3} +  \sqrt{10} -  \sqrt{6}   }{5 - 3}

 \dfrac{ \sqrt{5}  -  \sqrt{3} +  \sqrt{10} -  \sqrt{6}   }{2}

_____________________

We shall do rationalization for second term

 \dfrac{1 -  \sqrt{2} }{ \sqrt{5} -  \sqrt{3}  }

In order to rationalize so multiply and divide with its Rationalizing factor

Rationalizing factor for

 \sqrt{5}  -  \sqrt{3 \:   }  \: is \:  \:  \sqrt{5}  +  \sqrt{3}

 \dfrac{1 -  \sqrt{2} }{ \sqrt{5}  -  \sqrt{3} }  \times  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}  }

 \dfrac{(1 -  \sqrt{2})(  \sqrt{5} +  \sqrt{3} ) }{( \sqrt{5} -  \sqrt{3})( \sqrt{5}  +  \sqrt{3} )  }

 \dfrac{ \sqrt{5}  +  \sqrt{3} -  \sqrt{10} -  \sqrt{6}   }{( \sqrt{5}) {}^{2}  - ( \sqrt{3} ) {}^{2}  }

 \dfrac{ \sqrt{5}  +  \sqrt{3}  -  \sqrt{10} -  \sqrt{6}  }{5 - 3}

 \dfrac{ \sqrt{5} +  \sqrt{3} -  \sqrt{10}  -  \sqrt{6}   }{2}

Now, adding the both terms

\Big (\dfrac{1 + \sqrt 2}{\sqrt 5 + \sqrt 3} \Big ) + \Big (\dfrac{1 - \sqrt 2}{\sqrt 5 - \sqrt 3}\Big )

 \dfrac{ \sqrt{5} -  \sqrt{3} +  \sqrt{10} -  \sqrt{6}    }{2}  +  \dfrac{ \sqrt{5} +  \sqrt{3}  -  \sqrt{10}   -  \sqrt{6} }{2}

 \dfrac{ \sqrt{5} -  \sqrt{3}  +  \sqrt{10} -  \sqrt{6}  +  \sqrt{5}  +  \sqrt{3} -  \sqrt{10}    -  \sqrt{6}  }{2}

 \dfrac{2 \sqrt{5}  - 2 \sqrt{6} }{2}

 (\sqrt{5}  -  \sqrt{6} ) \div 1

So, \Big (\dfrac{1 + \sqrt 2}{\sqrt 5 + \sqrt 3} \Big ) + \Big (\dfrac{1 - \sqrt 2}{\sqrt 5 - \sqrt 3}\Big ) =

 \sqrt{5}  -  \sqrt{6}

Hence denomiantor rationalized

Similar questions