Math, asked by priyadagar80, 9 months ago

rationalize the denominator of the following: 1/√5-√2

Answers

Answered by amankumaraman11
1

 \bf \huge \dag \:  \:  \:  \:  \frac{1}{ \sqrt{5}  -  \sqrt{2} }  \\  \\  \\  \hookrightarrow \frac{1}{ \sqrt{5} -  \sqrt{2}  }  \times  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5} +  \sqrt{2}  }  \\  \\ \hookrightarrow \frac{ \sqrt{5}  +  \sqrt{2} }{ {( \sqrt{5} )}^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\ \hookrightarrow \:  \:  \frac{ \sqrt{5} +  \sqrt{2}  }{5 - 2}   \:  \: =  \frac{ \sqrt{5}  +  \sqrt{2} }{3}

 \\  \\  \\  \\  \\  \\

<marquee>MARK BRAINLIEST ⤴⤴

Answered by IamNehaRoy
1

Hope this helps you ;)

 \frac{1}{ \sqrt{5} -  \sqrt{2}  }

 =  \frac{1}{ \sqrt{5} -  \sqrt{2}  }  \times  \frac{( \sqrt{5} +  \sqrt{2})  }{( \sqrt{5}  +  \sqrt{2} )}

 =  \frac{ \sqrt{5} +  \sqrt{2}  }{ { \sqrt{5} }^{2}  -  { \sqrt{2} }^{2} }

 =  \frac{ \sqrt{5} +  \sqrt{2}  }{5 - 2}

 =  \frac{ \sqrt{5} +  \sqrt{2}  }{3}

Similar questions