Math, asked by anshubhardwaj776, 2 months ago

Rationalize the denominator of the following:

2
__________
√3-√5

Answers

Answered by SarcasticBunny
8

Given :-

\sf \bullet \;\; \dfrac{2}{\sqrt{3} - \sqrt{5}}

To Do :-

  • Rationalize the denominator

Solution :-

\sf : \; \implies \dfrac{2}{\sqrt{3} -\sqrt{5} }

\sf : \; \implies \dfrac{2}{\sqrt{3} -\sqrt{5} } \times \dfrac{\sqrt{3} + \sqrt{5} }{\sqrt{3}+ \sqrt{5} }

\sf : \; \implies \dfrac{2 \times ( \sqrt{3} + \sqrt{5} )}{(\sqrt{3} -\sqrt{5}) \times (\sqrt{3} +\sqrt{5})  }

\sf : \; \implies \dfrac{2 \times (\sqrt{3}+ \sqrt{5} )}{(\sqrt{3})^{2} -(\sqrt{5})^{2} }

\sf : \; \implies \dfrac{2 \times ( \sqrt{3} +\sqrt{5} )}{ 3-5 }

\sf : \; \implies \dfrac{2 \times ( \sqrt{3} +\sqrt{5} )}{ -2 }

\sf : \; \implies - ( \sqrt{3} +\sqrt{5} \; )

\boxed{\bf{ \star \;\;  \sqrt{3}  -\sqrt{5}}}

Similar questions