Math, asked by dfgh4, 1 year ago

Rationalize the denominator of the following
 \frac{1.6}{ \sqrt{41} - 5 }


DaIncredible: is it 1.6 or 16 ?
dfgh4: 1.6

Answers

Answered by DaIncredible
11
Hey friend,
Here is the answer you were looking for:
 \frac{1.6}{ \sqrt{41} - 5 }  \\  \\  =  \frac{16}{ 10(\sqrt{41} - 5 )  }  \\  \\  =  \frac{16}{10 \sqrt{41} - 50 }  \\

On rationalizing the denominator we get,

 \frac{16}{10 \sqrt{41} - 50 }  \times  \frac{10 \sqrt{41} + 50 }{10 \sqrt{41} + 50 }  \\  \\  =  \frac{16(10 \sqrt{41} + 50) }{ {(10 \sqrt{41} )}^{2}  -  {(50)}^{2}  }  \\  \\  =  \frac{160 \sqrt{41}  + 800}{4100 - 2500}  \\  \\  =  \frac{160 \sqrt{41}  + 800}{1600}  \\  \\  =  \frac{ \sqrt{41} + 5 }{10}

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Answered by Anonymous
11
hiii!!!

here's Ur answer...

we \: have \: to \: rationalize \:  \frac{1.6}{ \sqrt{41}  - 5}  \\  \\  =  \frac{1.6}{ \sqrt{41}  - 5}  \times  \frac{ \sqrt{41} + 5 }{ \sqrt{41}  + 5}  \\  \\  =  \frac{1.6( \sqrt{41}  + 5)}{( \sqrt{41} - 5)( \sqrt{41} + 5)  }  \\  \\  =  \frac{1.6( \sqrt{41} + 5) }{ {( \sqrt{41}) }^{2} -  {5}^{2}  }  \\  \\  =  \frac{1.6( \sqrt{41}  + 5)}{41 - 25}  \\  \\  =  \frac{1.6( \sqrt{41}  + 5)}{16}  \\  \\  =  \frac{ \sqrt{41} + 5 }{10}  \\  \\ hope \: this \: helps...

Anonymous: hahaha.. thank u madam
Anonymous: btw thank u very much @dfgh4 for brainliest :)
dfgh4: thnk u rose999
Anonymous: np :-)
Similar questions