Math, asked by mjunaidalam699, 1 month ago

rationalize the denominator only intelligent people would be able to solve this if you are not intelligent just ignore this question. thank you ​

Attachments:

Answers

Answered by Yuseong
11

Required Solution:

 \sf{ \dfrac{1}{ \sqrt{7}  +  \sqrt{6}  -  \sqrt{13} } }

Here, let :

 \sf { \sqrt{7} + \sqrt{6} = a }

 \sf {  \sqrt{13} = b }

To rationalise the denominator, we'll have to multiply the denominator and the numerator by its rationalising factor. As we supposed (√7 + √6) as a and √13 as b, so the denominator is like ( a - b ). We know that rationalising factor of  \rm { (a -b)} is  \rm { (a + b)} . Therefore, the rationalising factor of  \bigg ( \rm { \dfrac{1}{\sqrt{7}  +  \sqrt{6}  -  \sqrt{13}  } } \bigg ) is ( \rm { \sqrt{7}  +  \sqrt{6}  +  \sqrt{13}  } ).

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf {  \dfrac{1}{ \sqrt{7} +  \sqrt{6}  -  \sqrt{13}   }  \times  \dfrac{ \sqrt{7} +  \sqrt{6}  +  \sqrt{13}  }{ \sqrt{7} +  \sqrt{6}  +  \sqrt{13}  }  }  \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{ \sqrt{7} +  \sqrt{6}  +  \sqrt{13}  }{ { \big( \sqrt{7}  +  \sqrt{6} \big ) }^{2} -   {( \sqrt{ 13} )}^{2} } } \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

[ Since, (a - b)(a + b) = a² - b² ]

 \longrightarrow \sf { \dfrac{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}   }{ \pink{  {( \sqrt{7}) }^{2} +   { (\sqrt{6}) }^{2}  + 2(  \sqrt{7}   \times  \sqrt{6}  ) } -  {( \sqrt{13}) }^{2} } } \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}   }{  7 +   6  + 2(  \sqrt{42}     )  - 13  } }  \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}   }{ \cancel{ 13} + 2(  \sqrt{42}     )  \cancel{- 13}  }} \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}   }{   2(  \sqrt{42}     )   }} \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now, as we know that rationalising factor of √a is √a since √a × √a is a which is rational. So, rationalising factor of √42 is √42. To rationalise it, we'll multiply √42 with the numerator and the denominator.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}   }{   2(  \sqrt{42}     )   } \times  \dfrac{ \sqrt{42} }{ \sqrt{42} } } \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf { \dfrac{  \sqrt{42}  (\sqrt{7} )+   \sqrt{42} (\sqrt{6} )+  \sqrt{42(}  \sqrt{13})   }{   \sqrt{42}  (2 \sqrt{42})  } } \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{  \sqrt{294}  +  \sqrt{252}   + \sqrt{546}   }{   2 \times 42  } } \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{  \sqrt{294}  +  \sqrt{252}   + \sqrt{546}   }{   84} } \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{  7\sqrt{6}  +  6\sqrt{7}   + \sqrt{546}   }{   84} } \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{7\sqrt{6}}{84}  +   \dfrac{6\sqrt{7} }{84}  +  \dfrac{\sqrt{546}   }{   84} } \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \boxed{ \sf { \dfrac{\sqrt{6}}{12}  +   \dfrac{\sqrt{7} }{14}  +  \dfrac{\sqrt{546}   }{   84} } }\\

Points to remember:

• (a + b) and (a - b) are rationalising factors of each other.

• (a + b√x) and (a - b√x) are rationalising factors of each other.

Some Identities:

• (√a)² = a

• √a√b = √ab

• √a/√b = √a/b

• (√a + √b)(√a - √b) = a - b

• (a + √b)(a - √b) = a² - b

• (√a ± √b)² = a ± 2√ab + b

• (√a + √b)(√c + √d) = √ac + √ad + √bc + √bd

Answered by Anonymous
3

Answer:-

That's not true. If you know the correct procedure, you can solve anything related. Only group the denominator into two. That's it.

Refer to the attachment for answer.

Attachments:
Similar questions