Math, asked by siddheshsadarao29, 2 days ago

rationalize the denominator root 11- root 7 / root 11 + root 7​

Answers

Answered by ISAlishaTripathy
0

Answer:

The answer is \frac{18 + 2 \sqrt{77} }{3} .

Step-by-step explanation:

 \frac{ \sqrt{11} -  \sqrt{7}  }{ \sqrt{11}  +  \sqrt{7} } \\  =  \frac{( \sqrt{11}  -  \sqrt{7})( \sqrt{11} -  \sqrt{7}) }{( \sqrt{11} +  \sqrt{7})( \sqrt{11} -  \sqrt{7}) }  \\  =  \frac{ ({ \sqrt{11}  -  \sqrt{7}) }^{2} }{ { (\sqrt{11}) }^{2}  -   ({ \sqrt{7} )}^{2}  }  \\  =  \frac{( { \sqrt{11} )}^{2}  + ( { \sqrt{7} )}^{2} - (2 \sqrt{11}  \sqrt{7} )  }{11 - 7}  \\  =  \frac{11 + 7 + 2 \sqrt{77} }{3}  \\  =  \frac{18 + 2 \sqrt{77} }{3}

Answered by kurienloy
0

Answer:

Step-by-step explanation:

/* Rationalising the denominator, we get

/* By algebraic identities:

i) (a-b)² = a²+b²-2ab

ii) (a+b)(a-b) = a² - b² */

Therefore,

/* Compare both sides, we get

•••♪

✪ Be Brainly ✪

Hope this helps you thanku (◕ᴗ◕✿) (≧▽≦)

please mark me as the brainliest

Similar questions