Math, asked by memeslol504, 9 months ago

rationalize the denominator root 6 - root 5 / root 6 + root 5
answer in full

Answers

Answered by mrayaan07
25

Step-by-step explanation:

I hope it will help you and please mark me as brainliest.

Attachments:
Answered by smithasijotsl
2

Answer:

\frac{\sqrt{6} -\sqrt{5} }{\sqrt{6} +\sqrt{5} } = 11 - 2\sqrt{30}

Step-by-step explanation:

Given expression is \frac{\sqrt{6} -\sqrt{5} }{\sqrt{6} +\sqrt{5} }

Rationalizing the denominator is the process of eliminating the irrational number from the denominator.

Rationalizing factor is \sqrt{6} -\sqrt{5}

Multiply the numerator and denominator with the rationalizing factor we get

\frac{\sqrt{6} -\sqrt{5} }{\sqrt{6} +\sqrt{5} } ×\frac{\sqrt{6} -\sqrt{5} }{\sqrt{6} -\sqrt{5} }

= \frac{(\sqrt{6} -\sqrt{5})^2 }{(\sqrt{6})^2 - (\sqrt{5})^2 }

= \frac{(\sqrt{6})^2 + (\sqrt{5})^2 - 2\sqrt{6} \sqrt{5}   }{6 -5 }

= \frac{6 + 5 - 2\sqrt{30} }{1 }

= 11 - 2\sqrt{30}

The expression \frac{\sqrt{6} -\sqrt{5} }{\sqrt{6} +\sqrt{5} } with rational denominator = 11 - 2\sqrt{30}

#SPJ2

Similar questions