Rationalize the denominator
Answers
Correct Statement is
Rationalize the denominator
Answer
Basic Concept Used :-
Rationalisation :
- It is the process by which the square root term or any complicated term in the denominator of a fraction is reduced by multiplying the numerator and denominator of the fraction by the same term as denominator but opposite in sign.
Let's solve the problem now!!
Consider,
On rationalizing the denominator, we get
Answer:
Answer
Basic Concept Used :-
Rationalisation :
It is the process by which the square root term or any complicated term in the denominator of a fraction is reduced by multiplying the numerator and denominator of the fraction by the same term as denominator but opposite in sign.
Let's solve the problem now!!
Consider,
\rm :\longmapsto\: \sf \: \dfrac{1}{ \sqrt{7} + \sqrt{6} + \sqrt{13} }:⟼
7
+
6
+
13
1
\sf \: \: \: = \: \: \sf \: \dfrac{1} {\bigg(\sqrt{7} + \sqrt{6} \bigg) + \sqrt{13}}=
(
7
+
6
)+
13
1
On rationalizing the denominator, we get
\sf \: = \: \dfrac{1}{\bigg(\sqrt{7} + \sqrt{6} \bigg) + \sqrt{13} } \times \dfrac{\bigg(\sqrt{7} + \sqrt{6} \bigg) - \sqrt{13} }{\bigg(\sqrt{7} + \sqrt{6} \bigg) - \sqrt{13} }=
(
7
+
6
)+
13
1
×
(
7
+
6
)−
13
(
7
+
6
)−
13
\sf \: \: \: = \: \: \dfrac{\bigg(\sqrt{7} + \sqrt{6} \bigg) - \sqrt{13} }{\bigg(\sqrt{7} + \sqrt{6} \bigg)^{2} - (\sqrt{13})^{2} }=
(
7
+
6
)
2
−(
13
)
2
(
7
+
6
)−
13
\: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \sf \because \: (x + y)(x - y) = {x}^{2} - {y}^{2} }
∵(x+y)(x−y)=x
2
−y
2
\sf \: \: \: = \: \: \dfrac{\bigg(\sqrt{7} + \sqrt{6} \bigg) - \sqrt{13} }{7 + 6 + 2 \times \sqrt{7} \times \sqrt{6} - 13}=
7+6+2×
7
×
6
−13
(
7
+
6
)−
13
\: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \sf \because \: {(x + y)}^{2} = {x}^{2} + {y}^{2} + 2xy}
∵(x+y)
2
=x
2
+y
2
+2xy
\sf \: \: \: = \: \: \dfrac{\bigg(\sqrt{7} + \sqrt{6} \bigg) - \sqrt{13} }{ \cancel{13} + 2 \sqrt{42} - \cancel{13}}=
13
+2
42
−
13
(
7
+
6
)−
13
\sf \: \: \: = \: \: \dfrac{\bigg(\sqrt{7} + \sqrt{6} \bigg) - \sqrt{13} }{2 \sqrt{42} } \times \dfrac{ \sqrt{42} }{ \sqrt{42} }=
2
42
(
7
+
6
)−
13
×
42
42
\sf \: \: \: = \: \: \dfrac{ \sqrt{7 \times 42} + \sqrt{6 \times 42} - \sqrt{13 \times 42} }{2 \times 42}=
2×42
7×42
+
6×42
−
13×42
\sf \: \: \: = \: \: \dfrac{7 \sqrt{6} + 6 \sqrt{7}- \sqrt{546} }{84}=
84
7
6
+6
7
−
546
\sf \: \: \: = \: \: \dfrac{7 \sqrt{6} }{84} + \dfrac{6 \sqrt{7} }{84} - \dfrac{ \sqrt{546} }{84}=
84
7
6
+
84
6
7
−
84
546
\sf \: \: \: = \: \: \dfrac{\sqrt{6} }{12} + \dfrac{\sqrt{7} }{14} - \dfrac{ \sqrt{546} }{84}=
12
6
+
14
7
−
84
546