Math, asked by barbie13546pdghzb, 1 year ago

rationalize the denominator

 \frac{1}{(1 +  \sqrt{5} +  \sqrt{3})  }


Anonymous: ___k off

Answers

Answered by Anonymous
5

Your answer is in the attachment.

What is rationalisation?

The rewriting of any number in the form of rational numbers is known as rationalisation.

What are real numbers?

The numbers which are in the form of p/q where both p and q are integers and q ≠ 0 are equal numbers.

Attachments:

barbie13546pdghzb: thanks
Anonymous: :)
Answered by Anonymous
13

\mathrm{Question :\;\dfrac{1}{1 + \sqrt{5} + \sqrt{3}}}

\mathrm{Multiplying\;and\;Dividing\;the\;above\;fraction\;with\;1 + \sqrt{5} - \sqrt{3}}

\implies \dfrac{1 + \sqrt{5} - \sqrt{3}}{1 + \sqrt{5} - \sqrt{3}} \times \dfrac{1}{1 + \sqrt{5} + \sqrt{3}}

\mathrm{\implies \dfrac{1 + \sqrt{5} - \sqrt{3}}{(1 + \sqrt{5} - \sqrt{3})(1 + \sqrt{5} + \sqrt{3})}}

\mathrm{\implies \dfrac{1 + \sqrt{5} - \sqrt{3}}{(1 + \sqrt{5})^2 - (\sqrt{3})^2}}

\mathrm{\implies \dfrac{1 + \sqrt{5} - \sqrt{3}}{1 + (\sqrt{5})^2 + 2\sqrt{5} - 3}}

\mathrm{\implies \dfrac{1 + \sqrt{5} - \sqrt{3}}{1 + 5 + 2\sqrt{5} - 3}}

\mathrm{\implies \dfrac{1 + \sqrt{5} - \sqrt{3}}{3 + 2\sqrt{5}}}

\mathrm{Multiplying\;and\;Dividing\;the\;above\;fraction\;with\;3 - 2\sqrt{5}}

\implies \dfrac{3 - 2\sqrt{5}}{3 - 2\sqrt{5}} \times \dfrac{1 + \sqrt{5} - \sqrt{3}}{3 + 2\sqrt{5}}}

\implies \dfrac{(1 + \sqrt{5} - \sqrt{3})(3 - 2\sqrt{5})}{(3 + 2\sqrt{5})(3 - 2\sqrt{5})}}

\implies \dfrac{3 - 2\sqrt{5} + 3\sqrt{5} - (2\sqrt{5})(\sqrt{5}) - 3\sqrt{3} + (2\sqrt{5})(\sqrt{3})}{(3)^2 - (2)^2(\sqrt{5})^2}}

\implies \dfrac{3 + \sqrt{5} - (2)(5) - 3\sqrt{3} + (2\sqrt{5\times 3})}{9 - (4)(5)}}

\implies \dfrac{3 + \sqrt{5} - 10 - 3\sqrt{3} + 2\sqrt{15}}{9 - 20}}

\implies \dfrac{-7 + \sqrt{5} - 3\sqrt{3} + 2\sqrt{15}}{-11}}

\implies \dfrac{7 - \sqrt{5} + 3\sqrt{3} - 2\sqrt{15}}{11}}

Similar questions