Math, asked by RushiSolanki, 1 year ago

Rationalize the denominator.
 \frac{1}{2 +  \sqrt{ 3} }

Answers

Answered by MohnishKundnani
0

Answer:

we will multiply both the numerator and denominator by 2-√3

so we will get 2-√3

Answered by AbhijithPrakash
3

Answer:

\dfrac{1}{2+\sqrt{3}}=2-\sqrt{3}

Step-by-step explanation:

\dfrac{1}{2+\sqrt{3}}

\mathrm{Multiply\:by\:the\:conjugate}\:\dfrac{2-\sqrt{3}}{2-\sqrt{3}}

=\dfrac{1\cdot \left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}

1\cdot \left(2-\sqrt{3}\right)=2-\sqrt{3}

\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)

\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}\left(a+b\right)\left(a-b\right)=a^2-b^2 a=2,\:b=\sqrt{3}

=2^2-\left(\sqrt{3}\right)^2

\mathrm{Simplify}\:2^2-\left(\sqrt{3}\right)^2

=4-3

\mathrm{Subtract\:the\:numbers:}\:4-3=1

=1

=\dfrac{2-\sqrt{3}}{1}

\mathrm{Apply\:rule}\:\dfrac{a}{1}=a

=2-\sqrt{3}

Similar questions