Math, asked by fathimazeba004, 10 months ago

rationalize the denominator \frac{1}{\sqrt{6}+\sqrt{5}- \sqrt{11}  } \\

Answers

Answered by Anonymous
14

\huge{\star}{\underline{\boxed{\red{\sf{Answer :}}}}}{\star}

Given :-

 \sf{ \frac{1}{ \sqrt{ 6} +  \sqrt{5} -  \sqrt{11}  } }

===============

Solution :-

We know that,

When there is root in the denominator then we factorise it.

 \hookrightarrow\sf{ \frac{1}{ \sqrt{ 6} +  \sqrt{5} -  \sqrt{11}  } } \\  \\  \sf{ \hookrightarrow \frac{1}{ \sqrt{6}  +  \sqrt{5} -  \sqrt{11}  }   \:  \:  \: \times  \:  \: \:  \frac{ \sqrt{6}  +  \sqrt{5}  +  \sqrt{11} }{ \sqrt{6}  +  \sqrt{5} +  \sqrt{11}  }  } \\  \\  \bf{here \: \sqrt{6}  +  \sqrt{5}   \: is \: a \: and \:  \sqrt{11} \: is \: b \:  }

\LARGE{\boxed{\blue{\sf{(a + b) (a - b)  = a^2 - b^2 }}}}

\Large \sf{ \hookrightarrow \frac{ \sqrt{6} +  \sqrt{5}   +  \sqrt{11} }{( { \sqrt{6}  +  \sqrt{5} )}^{2} - (  { \sqrt{11)} }^{2}  } }

\LARGE{\boxed{\green{\sf{(a + b)^2 = a^2 + b^2 + 2ab}}}}

 \sf{ \hookrightarrow  \frac{ \sqrt{6}  +  \sqrt{5} +  \sqrt{11}  }{( \sqrt{6})^{2} +  ({ \sqrt{5}) }^{2}   + 2( \sqrt{6)} ( \sqrt{5) } - 11  } } \\  \\  \sf{ \hookrightarrow \frac{ \sqrt{6} +  \sqrt{5}  +  \sqrt{11}  }{6 + 5 - 11 + 2 \sqrt{30} } } \\  \\  \sf{ \hookrightarrow \frac{ \sqrt{6} +  \sqrt{5} +  \sqrt{11}   }{ \cancel{11} - { \cancel11} + 2 \sqrt{30} } } \\  \\  \sf{   \hookrightarrow \frac{ \sqrt{6} +  \sqrt{5}  +  \sqrt{11}  }{2 \sqrt{30} } }

==================

\huge{\boxed{\orange{\sf{\frac{ \sqrt{6} +  \sqrt{5}  +  \sqrt{11}  }{2 \sqrt{30}}}}}}

Similar questions