Math, asked by Anonymous, 2 months ago


Rationalize the denominator.

  \huge \tt\frac{4}{7 + 4 \sqrt{3}}

Answers

Answered by Anonymous
37

Answer:

refer to the above attachment

Attachments:
Answered by Ladylaurel
21

Question

Rationalise the denominator.

 \large{\tt{\dfrac{4}{7 + 4 \sqrt{3}}}}

 \\

Answer :-

 \maltese \:  \:  \:  \:  \: \sf{\dfrac{4}{7 + 4 \sqrt{3}} = \red{28 + 16 \sqrt{3}}}

 \\

EXPLANATION

 \longmapsto \:  \: \tt{\dfrac{4}{7 + 4 \sqrt{3}}}

On multiplying (7-43)/(7-43),

 \longmapsto \:  \: \tt{\dfrac{4}{7 + 4 \sqrt{3}} \times \dfrac{7 - 4 \sqrt{3}}{7 - 4 \sqrt{3}}}

 \longmapsto \:  \: \tt{ \dfrac{4(7 - 4 \sqrt{3})}{{(7)}^{2} - {(4 \sqrt{3})}^{2}}}

Simplifying the numerator 4(7-43),

 \longmapsto \:  \: \tt{ \dfrac{4(7) - 4(4 \sqrt{3})}{{(7)}^{2} - {(4 \sqrt{3})}^{2}}}

 \longmapsto \:  \: \tt{ \dfrac{28 - 16 \sqrt{3}}{{(7)}^{2} - {(4 \sqrt{3})}^{2}}}

On simplifying, the denominator (7)² = 49 and (43)² = 16*3 = 48,

 \longmapsto \:  \: \tt{ \dfrac{28 - 16 \sqrt{3}}{49 - {(16 \times 3)}}}

 \longmapsto \:  \: \tt{ \dfrac{28 - 16 \sqrt{3}}{49 - {48}}}

On Subtracting 48 from 49,

 \longmapsto \:  \: \tt{ \dfrac{28 - 16 \sqrt{3}}{1}}

 \longmapsto \:  \underline{\boxed{ \bf{ANSWER} =  \frak{28 - 16 \sqrt{3}}}} \:  \:  \:  \dag

ㅤㅤㅤㅤ________________________

 \\

Hence, The required number is 28 - 16√3.

Similar questions