Math, asked by ghostvenom, 4 months ago

Rationalize the deominator
a.2/(_/3-1
b.7/(_/12-_/5)
c.1/(8+3_/5)​

Answers

Answered by HiteshJoshi7
18

(I)

 \frac{2}{ \sqrt{3} - 1 }  =  \frac{2}{ \sqrt{3} - 1 }  \times  \frac{ \sqrt{3}  + 1}{ \sqrt{3} + 1 }  \\  = \frac{2( \sqrt{3 } + 1) }{ {( \sqrt{3}) }^{2}  -  {(1)}^{2} }  =  \frac{2( \sqrt{3} - 1 }{3 - 1}  =  \\  \frac{2( \sqrt{3} - 1) }{2}  =  \frac{ \sqrt{3} - 1 }{1}

(ii)

 \frac{7}{ \sqrt{12} -  \sqrt{5}  }  =  \frac{7}{ \sqrt{12}  -  \sqrt{5} }  \times  \frac{ \sqrt{12}  +  \sqrt{5} }{ \sqrt{12} +  \sqrt{5}  }  \\  =  \frac{7( \sqrt{12}  +   \sqrt{5} ) }{ { \sqrt{(12)} }^{2}   -   { \sqrt{(5)} }^{2}  }  =  \frac{7( \sqrt{12}    +   \sqrt{5} )}{7}  =  \frac{ \sqrt{12}  +  \sqrt{5} }{1}

(iii) \frac{1}{8 +  \sqrt[3]{5} }  =  \frac{1}{8 +  \sqrt[3]{5} }  \times  \frac{8 -  \sqrt[3]{5} }{8 -  \sqrt[3]{5} }  \\  =  \frac{8 -  \sqrt[3]{5} }{ {(8)}^{2}  -  {( \sqrt[3]{5}) }^{2} }  =  \frac{8 -  \sqrt[3]{5} }{64 - (9 \times 5)}  \\  =  \frac{8 -  \sqrt[3]{5} }{24}

I think it's correct

please mark brainliest


Pakiki: thanks for thanking my answer sis/bro
HiteshJoshi7: bro, welcome yaar
Pakiki: thanks ab aur mat karo
HiteshJoshi7: hmm ok
Similar questions