Math, asked by jeetkomal77, 3 months ago

Rationalize the dinominater:1/{7+3√3}

Answers

Answered by raheepradeep6306
2

Answer:

\frac{1}{7 + 3 \sqrt{x3} } × \frac{7 - 3\sqrt{3}}{7 - 3\sqrt{3}}

= \frac{7 - 3\sqrt{3}}{7^{2} - (3\sqrt{3}) ^{2}   }

= \frac{7 - 3\sqrt{3}}{49 - (9) (3)}

= \frac{7 - 3\sqrt{3}}{49 - 27}

= \frac{7 - 3\sqrt{3}}{22}

HOPE IT HELPS ;)

Answered by Anonymous
21

Answer:

{ \huge{ \sf{ \red{Question:}}}}

  • { \sf{Rationalize \: { \frac{1}{7 + 3 \sqrt{3} } }}}

 \huge{  \sf{ \green{Solution: }}}

 : { \implies{ \sf{ \frac{1}{7 + 3 \sqrt{3} } }}} \\  \\  : { \implies{ \sf{ \frac{1}{7 + 3 \sqrt{3}  }  \times  \frac{7 - 3 \sqrt{3} }{7 - 3 \sqrt{3} } }}} \\  \\  : { \implies{ \sf{ \frac{7 - 3 \sqrt{3} }{ {(7)}^{2}  - (3 { \sqrt{ 3} )}^{2} } }}} \\  \\  : { \implies{ \sf{ \frac{7 - 3 \sqrt{3} }{49 - 9(3)} }}} \\  \\  : {  \implies{ \sf{ \frac{7 - 3 \sqrt{3} }{49 - 27} }}} \\  \\  : { \implies{ \sf{ \frac{7 - 3 \sqrt{3} }{22} }}}

Similar questions